Free Biology Lectures and Videos
Free Biology Lectures and Videos

DNA Mutation Video

Posted In: , , . AddThis Feed Button



In biology, mutations are changes to the base pair sequence of the genetic material of an organism. Mutations can be caused by copying errors in the genetic material during cell division, by exposure to ultraviolet or ionizing radiation, chemical mutagens, or viruses, or can occur deliberately under cellular control during processes such as hypermutation. In multicellular organisms, mutations can be subdivided into germ line mutations, which can be passed on to descendants, and somatic mutations, which cannot be transmitted to descendants in animals. Plants sometimes can transmit somatic mutations to their descendants asexually or sexually (in case when flower buds develop in somatically mutated part of plant). A new mutation that was not inherited from either parent is called a de novo mutation.

 

DNA Structure-Video

Posted In: , . AddThis Feed Button


Deoxyribonucleic acid (DNA) is a nucleic acid that contains the genetic instructions used in the development and functioning of all known living organisms. The main role of DNA molecules is the long-term storage of information and DNA is often compared to a set of blueprints, since it contains the instructions needed to construct other components of cells, such as proteins and RNA molecules. The DNA segments that carry this genetic information are called genes, but other DNA sequences have structural purposes, or are involved in regulating the use of this genetic information.

Chemically, DNA is a long polymer of simple units called nucleotides, with a backbone made of sugars and phosphate groups joined by ester bonds. Attached to each sugar is one of four types of molecules called bases. It is the sequence of these four bases along the backbone that encodes information. This information is read using the genetic code, which specifies the sequence of the amino acids within proteins. The code is read by copying stretches of DNA into the related nucleic acid RNA, in a process called transcription. Most of these RNA molecules are used to synthesize proteins, but others are used directly in structures such as ribosomes and spliceosomes.

Within cells, DNA is organized into structures called chromosomes and the set of chromosomes within a cell make up a genome. These chromosomes are duplicated before cells divide, in a process called DNA replication. Eukaryotic organisms such as animals, plants, and fungi store their DNA inside the cell nucleus, while in prokaryotes such as bacteria it is found in the cell's cytoplasm. Within the chromosomes, chromatin proteins such as histones compact and organize DNA, which helps control its interactions with other proteins and thereby control which genes are transcribed.

 

DNA Replication Video

Posted In: , . AddThis Feed Button


DNA replication is the process of copying a double-stranded DNA molecule. This process is important in all known life forms and the general mechanisms of DNA replication are not the same in prokaryotic and eukaryotic organisms. As each DNA strand holds the same genetic information, both strands can serve as templates for the reproduction of the opposite strand. The template strand is preserved in its entirety and the new strand is assembled from nucleotides. This process is called semiconservative replication. The resulting double-stranded DNA molecules are identical; proofreading and error-checking mechanisms exist to ensure extremely high fidelity.

 

Central dogma of Molecular Biology-Video

Posted In: , , , , . AddThis Feed Button



The dogma is a framework for understanding the transfer of sequence information between sequential information-carrying biopolymers, in the most common or general case, in living organisms. There are 3 major classes of such biopolymers: DNA and RNA (both nucleic acids), and protein. There are 3×3 = 9 conceivable direct transfers of information that can occur between these. The dogma classes these into 3 groups of 3: 3 general transfers (believed to occur normally in most cells), 3 special transfers (known to occur, but only under abnormal conditions), and 3 unknown transfers (believed to never occur). The general transfers describe the normal flow of biological information: DNA can be copied to DNA (DNA replication), DNA information can be copied into mRNA, (transcription), and proteins can be synthesized using the information in mRNA as a template (translation).

 

Protein Translation-Video

Posted In: , , , . AddThis Feed Button

Category:Animation
Translation is the second process of protein biosynthesis (part of the overall process of gene expression). Translation occurs in the cytoplasm where the ribosomes are located. Ribosomes are made of a small and large subunit which surrounds the mRNA. In translation, messenger RNA (mRNA) is decoded to produce a specific polypeptide according to the rules specified by the genetic code. This is the process that converts an mRNA sequence into a chain of amino acids that form a protein. Translation is necessarily preceded by transcription. Translation proceeds in four phases: activation, initiation, elongation and termination (all describing the growth of the amino acid chain, or polypeptide that is the product of translation).

 

DNA Transcription-Video

Posted In: , , . AddThis Feed Button

Category:Animation
Transcription is the process through which a DNA sequence is enzymatically copied by an RNA polymerase to produce a complementary RNA. Or, in other words, the transfer of genetic information from DNA into RNA

 

Biology Books

Translate This Post